网站首页 > 产品知识> 继电器接点的特性

继电器接点的特性

信息来源 : 网络 | 发布时间 : 2016-01-04 08:40 | 浏览次数 : 2289

接点
接点的固有特性
如果从使用上来考虑接点的特性, 是指接触电阻稳定, 寿命越长 越好, 为了满足这些条件,接点追踪接点压力是两个 重要因数。
接点压力在一般使用的银或者其合金中为550g 金、铂、钯等 贵金属接点中一般为310g。由于开关容量小, 抗环境性比较 好, 因此贵金属接点下的值较小。
接点追踪中即使接点的接触部分有某种程度的消耗, 也需要接 触。该接点追踪与接点压力有着密切的关系, 两者的积为接点部 分的工作量。在限定的工作量中, 或增大接点压力, 或增大接点 追踪, 使用不同的方法, 其接触性也不同。
例如,接点压力大,而接点追踪小时,初期可以看出是否稳定。但 是随着接点的消耗,接点压力急剧减少,不久接触消失。
相反接点压力小,接点追踪大时,不会发生如前所述的情况。但是 接触电阻变高,难以破坏保护膜等。因此带适度接点追踪和接点压 力的继电器,可以说是好的继电器。接触电阻可以分为集中电阻和 界面电阻(保护膜电阻)。
接点接触乍一看上去好像是整个面的接触, 但实际由于接点的形 状、表面的粗糙度等, 只是接触了1点或者多点。电流集中流通 到这个接触点而产生的电阻就是集中电阻。
基本构成和动作原理可以发现与接点硬度、接点压力、 接点材质的固有电阻有关。这个接触部的模型如下所示。即接触 是比外观更小的接触面积, 电流在集中状态下流通。
以下表示测量接点压力和接触电阻关系时的实际示例。


另外, 接点如果暴露在空气中, 不能避免氧化保护膜、硫化保护 膜等的生成, 引起这些反应的电阻称为界面电阻(薄膜电阻)。 一般在使用接点前的状态下, 集中电阻所占的比例较大, 在使用 中, 由于电弧引起消耗、机械性磨损等, 相反界面电阻增多。这 些根据动作频率而有所不同。在频率大的接触面上比较清洁, 面电阻(薄膜电阻) 较小, 频率小的上面可能会生成相当高的电 阻保护膜。
另外, 样本目录等上记载有接触电阻值。这些值只不过是用标准 性试验方法规定的初始值。实际上, 需要使用符合各自装置的接 触电阻。一般负载阻抗的容许值, 除像传送声音电流时, 失真、 衰减造成问题的特殊情况外,接触电阻值为可容许负载阻抗的1 5%
负载条件和接点
继电器上发生的故障中, 多半是接点接触性问题所引起的, 根据 负载条件不同, 其故障内容也有所不同。负载条件可大致分为微 小能源·水平(小功率电路) 、中间能源·水平、高能源·水平。
微小能源·水平, 严格地来讲称为机械性接触电路, 是指不会因 热、放电等接点的接触状态而发生变化的负载条件。但是在实际 情况中, 即使施加某种程度的电压, 由于接触状态不变化, 因此 包含其负载条件在内, 进行定义。对接触状态不产生影响的界限 电压称为接点软化电压(Softening Voltage), 银为0.09V、金为0.08V、铂为0.25V、钨为0.6V
中间能源·水平是指引起轻度放电现象的负载条件, 从接点软化 电压到电弧开始放电的电压。电弧开始放电的电压, 银为12V 金为15V、铂为17.5V、钨为15V 10%的钯银合金为11V
高能源·水平是指电弧开始放电电压以上的电压。
有关接点的特殊问题
接点根据使用方法会发生特殊现象。以下表示这些内容。
(1)
负载开关时的异常腐蚀现象
这个现象是负载开关时的电弧和空气中的NO结合, 一般生成HNO3腐蚀金属材料(硝酸腐蚀)。


对策:
1.
通过消弧电路减少负载开关时的电弧量。
2.
减少开关频率, 消除持续的电弧。
3.
降低使用环境的湿度。
(2)
金属(coherer)效果
是接点通过接点表面的保护膜接触时, 接点电压达到某个值以上 后, 该保护膜被电气性破坏, 接触电阻急剧降低的现象。
(3)
热电动势
继电器接点构成材料的材质由功能多种多样的金属(银、铜合金 等) 组合而成。这些构成材料的接合部, 由于距离发热体(例 如线圈) 距离及传热路径的不同等而产生温度差。其结果是在接 点端子间产生热电动势(约数μV~约数10μV)。特别是使用微 小信号时要注意。
使用闭锁(保持) 继电器, 由于线圈的通电时间缩短, 控制线 圈发热来降低热电动势, 或使用热电动势小的继电器(特别顾及 了接点导电部的材质形状) 等来降低热电动势。
各负载条件下的接触性
在微小能源水平和高能源水平下, 在接点中发生的现象完全不 同。前者是接点消耗较少, 但是有无接触不良的问题。后者是接 点的消耗、熔化、转移等的问题。
在微小能源水平下, 接点的清洁度最为重要。附着不导通物质, 生成不导通的保护膜是造成接触不良的主要原因。
不导通物质有土沙, 纤维等尘埃。但在微小负载用的继电器中, 接点的导线、接点压力较小, 因此这类物质附着在接触面后, 引发接触不良。这种问题与接点材质无关, 主要是继电器的选择 以及使用方法方面的问题。生成不导通保护膜是由于空气中含有 的水分、油脂或者氧化物、其他继电器自身及建筑物排出来的有 机气体、汽车等的排气、工厂的煤烟、焊接的焊剂、工程人员的 指纹等。
对于不导通保护膜。需要在继电器构造、接点材质、环境整顿等 方面采取对策。
一般使用的银接点较容易氧化硫化。但是其中的氧化保护膜对于 接触性没有较大的影响, 而硫化保护膜有较大影响。这种情况下 使用难以发生硫化的贵金属。一般使用钯、金、铂等和银的合金 接点。另一方面, 铂系的接点利用苯、汽油等释放的不饱和性有 机气体, 生成绝缘体的粉末(褐色粉末)。金不会生成保护膜, 因此接触性稳定, 但由于较柔软, 低接点压力下接触部分会变 形,变形后不可使用。因此在钯等的2层接点的上层使用或者用于 保护接点的金保护膜等。
在微小负载也可引起放电的条件下, 接点氧化, 燃烧空气中含有 的可燃性物质, 生成碳化保护膜。碳化保护膜不是完全的绝缘 体, 有时可达到数10~数100Ω
在高能源水平下, 电弧放电由于持续产生能源, 接点开关时熔蚀 接点, 使其成为金属蒸气并飞散等, 造成接点的消耗。另外从一 方接点分离的金属粒子与其他方的接点结合, 引起接点转移, 后接通时可能会引起溶解结合等接点故障。
直流时, 像交流一样, 电压或者电流没有零点, 即使是相当小的 负载, 电弧也可持续较长时间。
在这样的负载条件下, 因金属粒子的附着、绝缘物的碳化会引起 绝缘老化, 因此需要注意绝缘物的材质、形状。
接点故障根据负载种类而有所不同。变压器、电机、灯等的负载 中有较大的冲击电流流通, 因此常有接点熔化事故发生。在灯、 电机、变压器、螺线管等中流通数倍到数10倍的电流。
在电机、变压器、螺线管等感性负载中, 断路时发生较大的逆起 功率。这个电压为达到恒定电压的420倍, 有时会消耗接点、 破坏负载。

www.jdqw.top


该信息来源于网络,如有侵权,请及时与我们联系